Demonstrating Liability and Trust Metrics for Multi-Actor, Dynamic Edge and Cloud Microservices
Résumé
Transitioning edge and cloud computing in 5G networks towards service-based architecture increases their complexity as they become even more dynamic and intertwine more actors or delegation levels. In this paper, we demonstrate the Liability-aware security manager Analysis Service (LAS), a framework that uses machine learning techniques to compute liability and trust indicators for service-based architectures such as cloud microservices. Based on the commitments of Service Providers (SPs) and real-time observations collected by a Root Cause Analysis (RCA) tool GRALAF, the LAS computes three categories of liability and trust indicators, specifically, a Commitment Trust Score, Financial Exposure, and Commitment Trends.