Enhancing privacy in VANETs through homomorphic encryption in machine learning applications - Cnam - Conservatoire national des arts et métiers
Communication Dans Un Congrès Année : 2024

Enhancing privacy in VANETs through homomorphic encryption in machine learning applications

Yulliwas Ameur
Samia Bouzefrane

Résumé

This paper presents a novel framework for enhancing privacy in Vehicular Ad Hoc Networks (VANETs) by integrating homomorphic encryption with machine learning applications. VANETs, essential for Intelligent Transport Systems (ITS), face significant challenges in privacy and security due to their highly dynamic and heterogeneous nature. Our framework addresses these challenges by employing a simplified but effective machine learning algorithm, the K-nearest neighbors (KNN), to ensure the security and privacy of the network. The flexibility of the framework allows for the incorporation of other machine learning algorithms, enhancing its adaptability and efficiency in various VANET scenarios. Key to this framework is the use of homomorphic encryption (HE), a cryptographic technique that enables computations on encrypted data without the need for decryption. This feature preserves data confidentiality and allows for secure third-party computations. Our paper discusses the evolution and types of homomorphic encryption, emphasizing the importance of Fully Homomorphic Encryption (FHE) for its ability to evaluate complex polynomial functions. The paper also highlights the different domains of cybersecurity concerns in VANETs, including in-vehicle systems, ad-hoc and infrastructure networks, and data analysis. The proposed framework aims to mitigate these vulnerabilities, particularly focusing on preventing common attacks like DoS and location tracking. A significant advantage of our approach is its general nature, making it applicable to various privacy issues in VANETs. We propose the potential integration of homomorphic encryption with other privacy-preserving techniques, such as differential privacy or secure multi-party computation, to enhance computation times while ensuring robust privacy protection.
Fichier principal
Vignette du fichier
1-s2.0-S1877050924012468-main.pdf (922.91 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04676567 , version 1 (23-08-2024)

Licence

Identifiants

Citer

Yulliwas Ameur, Samia Bouzefrane. Enhancing privacy in VANETs through homomorphic encryption in machine learning applications. 15th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2024), Apr 2024, Hasselt, Belgium. pp.151-158, ⟨10.1016/j.procs.2024.06.010⟩. ⟨hal-04676567⟩
47 Consultations
34 Téléchargements

Altmetric

Partager

More